Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Blood Adv ; 8(6): 1449-1463, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38290102

RESUMO

ABSTRACT: During development, erythroid cells are produced through at least 2 distinct hematopoietic waves (primitive and definitive), generating erythroblasts with different functional characteristics. Human induced pluripotent stem cells (iPSCs) can be used as a model platform to study the development of red blood cells (RBCs) with many of the differentiation protocols after the primitive wave of hematopoiesis. Recent advances have established that definitive hematopoietic progenitors can be generated from iPSCs, creating a unique situation for comparing primitive and definitive erythrocytes derived from cell sources of identical genetic background. We generated iPSCs from healthy fetal liver (FL) cells and produced isogenic primitive or definitive RBCs which were compared directly to the FL-derived RBCs. Functional assays confirmed differences between the 2 programs, with primitive RBCs showing a reduced proliferation potential, larger cell size, lack of Duffy RBC antigen expression, and higher expression of embryonic globins. Transcriptome profiling by scRNA-seq demonstrated high similarity between FL- and iPSC-derived definitive RBCs along with very different gene expression and regulatory network patterns for primitive RBCs. In addition, iPSC lines harboring a known pathogenic mutation in the erythroid master regulator KLF1 demonstrated phenotypic changes specific to definitive RBCs. Our studies provide new insights into differences between primitive and definitive erythropoiesis and highlight the importance of ontology when using iPSCs to model genetic hematologic diseases. Beyond disease modeling, the similarity between FL- and iPSC-derived definitive RBCs expands potential applications of definitive RBCs for diagnostic and transfusion products.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Eritropoese/genética , Eritrócitos , Diferenciação Celular/genética , Eritroblastos/metabolismo
2.
Nat Commun ; 14(1): 7668, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996457

RESUMO

Uncovering the mechanisms regulating hematopoietic specification not only would overcome current limitations related to hematopoietic stem and progenitor cell (HSPC) transplantation, but also advance cellular immunotherapies. However, generating functional human induced pluripotent stem cell (hiPSC)-derived HSPCs and their derivatives has been elusive, necessitating a better understanding of the developmental mechanisms that trigger HSPC specification. Here, we reveal that early activation of the Nod1-Ripk2-NF-kB inflammatory pathway in endothelial cells (ECs) primes them to switch fate towards definitive hemogenic endothelium, a pre-requisite to specify HSPCs. Our genetic and chemical embryonic models show that HSPCs fail to specify in the absence of Nod1 and its downstream kinase Ripk2 due to a failure on hemogenic endothelial (HE) programming, and that small Rho GTPases coordinate the activation of this pathway. Manipulation of NOD1 in a human system of definitive hematopoietic differentiation indicates functional conservation. This work establishes the RAC1-NOD1-RIPK2-NF-kB axis as a critical intrinsic inductor that primes ECs prior to HE fate switch and HSPC specification. Manipulation of this pathway could help derive a competent HE amenable to specify functional patient specific HSPCs and their derivatives for the treatment of blood disorders.


Assuntos
Hemangioblastos , Células-Tronco Pluripotentes Induzidas , Proteínas Monoméricas de Ligação ao GTP , Humanos , Diferenciação Celular , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , NF-kappa B/metabolismo , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
3.
JCI Insight ; 8(23)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37906251

RESUMO

Patients with Down syndrome (DS), or trisomy 21 (T21), are at increased risk of transient abnormal myelopoiesis (TAM) and acute megakaryoblastic leukemia (ML-DS). Both TAM and ML-DS require prenatal somatic mutations in GATA1, resulting in the truncated isoform GATA1s. The mechanism by which individual chromosome 21 (HSA21) genes synergize with GATA1s for leukemic transformation is challenging to study, in part due to limited human cell models with wild-type GATA1 (wtGATA1) or GATA1s. HSA21-encoded DYRK1A is overexpressed in ML-DS and may be a therapeutic target. To determine how DYRK1A influences hematopoiesis in concert with GATA1s, we used gene editing to disrupt all 3 alleles of DYRK1A in isogenic T21 induced pluripotent stem cells (iPSCs) with and without the GATA1s mutation. Unexpectedly, hematopoietic differentiation revealed that DYRK1A loss combined with GATA1s leads to increased megakaryocyte proliferation and decreased maturation. This proliferative phenotype was associated with upregulation of D-type cyclins and hyperphosphorylation of Rb to allow E2F release and derepression of its downstream targets. Notably, DYRK1A loss had no effect in T21 iPSCs or megakaryocytes with wtGATA1. These surprising results suggest that DYRK1A and GATA1 may synergistically restrain megakaryocyte proliferation in T21 and that DYRK1A inhibition may not be a therapeutic option for GATA1s-associated leukemias.


Assuntos
Síndrome de Down , Leucemia Megacarioblástica Aguda , Humanos , Síndrome de Down/genética , Síndrome de Down/complicações , Fator de Transcrição GATA1/genética , Leucemia Megacarioblástica Aguda/complicações , Leucemia Megacarioblástica Aguda/genética , Trombopoese/genética
4.
bioRxiv ; 2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37693628

RESUMO

Tropomyosins coat actin filaments and impact actin-related signaling and cell morphogenesis. Genome-wide association studies have linked Tropomyosin 1 (TPM1) with human blood trait variation. Prior work suggested that TPM1 regulated blood cell formation in vitro, but it was unclear how or when TPM1 affected hematopoiesis. Using gene-edited induced pluripotent stem cell (iPSC) model systems, TPM1 knockout was found to augment developmental cell state transitions, as well as TNFα and GTPase signaling pathways, to promote hemogenic endothelial (HE) cell specification and hematopoietic progenitor cell (HPC) production. Single-cell analyses showed decreased TPM1 expression during human HE specification, suggesting that TPM1 regulated in vivo hematopoiesis via similar mechanisms. Indeed, analyses of a TPM1 gene trap mouse model showed that TPM1 deficiency enhanced the formation of HE during embryogenesis. These findings illuminate novel effects of TPM1 on developmental hematopoiesis.

5.
Stem Cell Res ; 71: 103186, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37643495

RESUMO

Dysfunction of visceral smooth muscle ("visceral myopathy") impairs bowel, bladder, and uterine function. Symptoms of this life-threatening condition include massive intestinal distension with slow transit, vomiting, feeding intolerance, growth failure, poor bladder emptying, and difficult vaginal delivery. The most common genetic cause of visceral myopathy is a heterozygous point mutation (R257C) in gamma smooth muscle actin (ACTG2). We genetically modified the WAe0009-A human embryonic stem cell line to carry the c.769C>T p.R257C/+ mutation. This cell line will facilitate studies of how the ACTG2 R257C heterozygous variant affects smooth muscle development and function.


Assuntos
Células-Tronco Embrionárias , Doenças Musculares , Humanos , Feminino , Linhagem Celular , Heterozigoto , Desenvolvimento Muscular , Actinas/genética
6.
Stem Cell Res ; 71: 103176, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37572398

RESUMO

Visceral myopathies are debilitating conditions characterized by dysfunction of smooth muscle in visceral organs (bowel, bladder, and uterus). Individuals affected by visceral myopathy experience feeding difficulties, growth failure, life-threatening abdominal distension, and may depend on intravenous nutrition for survival. Unfortunately, our limited understanding of the pathophysiology of visceral myopathies means that current therapies remain supportive, with no mechanism-based treatments. We developed a patient-derived iPSC line with a c.769C > T p.R257C/+ mutation, the most common genetic cause of visceral myopathy. This cell line will facilitate studies of how the ACTG2 R257C heterozygous variant affects smooth muscle development and function.


Assuntos
Células-Tronco Pluripotentes Induzidas , Pseudo-Obstrução Intestinal , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Actinas/metabolismo , Pseudo-Obstrução Intestinal/genética , Pseudo-Obstrução Intestinal/metabolismo , Intestinos , Mutação
7.
Stem Cell Res ; 71: 103161, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37422949

RESUMO

The CHOPWT17_TPM1KOc28 iPSC line was generated to interrogate the functions of Tropomyosin 1 (TPM1) in primary human cell development. This line was reprogrammed from a previously published wild type control iPSC line.


Assuntos
Células-Tronco Pluripotentes Induzidas , Tropomiosina , Humanos , Tropomiosina/genética , Tropomiosina/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Linhagem Celular Tumoral
8.
bioRxiv ; 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37205377

RESUMO

The CHOPWT17_TPM1KOc28 iPSC line was generated to interrogate the functions of Tropomyosin 1 ( TPM1 ) in primary human cell development. This line was reprogrammed from a previously published wild type control iPSC line.

9.
Curr Protoc ; 2(11): e590, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36426905

RESUMO

Human pluripotent stem cells hold tremendous potential for both basic biology and cell-based therapies for a wide variety of diseases. The ability to manipulate the genome of these cells using the CRISPR/Cas9 technology has expanded this potential by providing a valuable tool to engineer or correct disease-associated mutations. Because of the high efficiency with which CRISPR/Cas9 creates targeted double-strand breaks, a major challenge has been the introduction of precise genetic modifications on one allele without indel formation on the non-targeted allele. To overcome this obstacle, we describe use of two oligonucleotide repair templates: one expressing the sequence change and the other maintaining the normal sequence. In addition, we have streamlined both the transfection and screening methodologies to make the protocols efficient, with small numbers of cells and a limited amount of labor-intensive clone passaging. This article provides a technically simple approach for generating valuable tools to model human disease in stem cells. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Application and optimization of CRISPR-based genome editing in human pluripotent stem cells Basic Protocol 2: Genetic modification of human pluripotent stem cells using a double-oligonucleotide CRISPR/Cas9 recombination system.


Assuntos
Edição de Genes , Células-Tronco Pluripotentes , Humanos , Sistemas CRISPR-Cas/genética , Terapia Baseada em Transplante de Células e Tecidos , Oligonucleotídeos
10.
J Clin Invest ; 132(19)2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-35925681

RESUMO

Infantile (fetal and neonatal) megakaryocytes (Mks) have a distinct phenotype consisting of hyperproliferation, limited morphogenesis, and low platelet production capacity. These properties contribute to clinical problems that include thrombocytopenia in neonates, delayed platelet engraftment in recipients of cord blood stem cell transplants, and inefficient ex vivo platelet production from pluripotent stem cell-derived Mks. The infantile phenotype results from deficiency of the actin-regulated coactivator, MKL1, which programs cytoskeletal changes driving morphogenesis. As a strategy to complement this molecular defect, we screened pathways with the potential to affect MKL1 function and found that DYRK1A inhibition dramatically enhanced Mk morphogenesis in vitro and in vivo. Dyrk1 inhibitors rescued enlargement, polyploidization, and thrombopoiesis in human neonatal Mks. Mks derived from induced pluripotent stem cells responded in a similar manner. Progenitors undergoing Dyrk1 inhibition demonstrated filamentous actin assembly, MKL1 nuclear translocation, and modulation of MKL1 target genes. Loss-of-function studies confirmed MKL1 involvement in this morphogenetic pathway. Expression of Ablim2, a stabilizer of filamentous actin, increased with Dyrk1 inhibition, and Ablim2 knockdown abrogated the actin, MKL1, and morphogenetic responses to Dyrk1 inhibition. These results delineate a pharmacologically tractable morphogenetic pathway whose manipulation may alleviate clinical problems associated with the limited thrombopoietic capacity of infantile Mks.


Assuntos
Megacariócitos , Trombocitopenia , Actinas/metabolismo , Plaquetas/metabolismo , Humanos , Recém-Nascido , Megacariócitos/metabolismo , Fenótipo , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Trombocitopenia/genética , Trombopoese/genética
11.
Blood ; 140(15): 1723-1734, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-35977098

RESUMO

Red blood cell (RBC) transfusion is one of the most common medical treatments, with more than 10 million units transfused per year in the United States alone. Alloimmunization to foreign Rh proteins (RhD and RhCE) on donor RBCs remains a challenge for transfusion effectiveness and safety. Alloantibody production disproportionately affects patients with sickle cell disease who frequently receive blood transfusions and exhibit high genetic diversity in the Rh blood group system. With hundreds of RH variants now known, precise identification of Rh antibody targets is hampered by the lack of appropriate reagent RBCs with uncommon Rh antigen phenotypes. Using a combination of human-induced pluripotent stem cell (iPSC) reprogramming and gene editing, we designed a renewable source of cells with unique Rh profiles to facilitate the identification of complex Rh antibodies. We engineered a very rare Rh null iPSC line lacking both RHD and RHCE. By targeting the AAVS1 safe harbor locus in this Rh null background, any combination of RHD or RHCE complementary DNAs could be reintroduced to generate RBCs that express specific Rh antigens such as RhD alone (designated D--), Goa+, or DAK+. The RBCs derived from these iPSCs (iRBCs) are compatible with standard laboratory assays used worldwide and can determine the precise specificity of Rh antibodies in patient plasma. Rh-engineered iRBCs can provide a readily accessible diagnostic tool and guide future efforts to produce an alternative source of rare RBCs for alloimmunized patients.


Assuntos
Antígenos de Grupos Sanguíneos , Células-Tronco Pluripotentes , Medicina Transfusional , Alelos , Antígenos de Grupos Sanguíneos/genética , Humanos , Sistema do Grupo Sanguíneo Rh-Hr/genética
12.
Methods Mol Biol ; 2520: 321-333, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35579838

RESUMO

The ability to engineer specific mutations in human embryonic stem cells (ECSs) or induced pluripotent stem cells (iPSCs) is extremely important in the modeling of human diseases and the study of biological processes. While CRISPR/Cas9 can robustly generate gene knockouts (KOs) and gene loci modifications in coding sequences of iPSCs, it remains difficult to produce monoallelic mutations or modify specific nucleotides in noncoding sequences due to technical constraints.Here, we describe how to leverage cytosine (BE4max) and adenine (ABEmax) base editors to introduce precise mutations in iPSCs without inducing DNA double-stranded breaks. This chapter illustrates how to design and clone gRNAs, evaluate editing efficiency, and detect genomic edits at specific sites in iPSCs through the utilization of base editing technology.


Assuntos
Sistemas CRISPR-Cas , Células-Tronco Pluripotentes Induzidas , Adenina , Sistemas CRISPR-Cas/genética , Citosina , Genoma Humano , Humanos
13.
Stem Cell Reports ; 16(11): 2617-2627, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34653400

RESUMO

Tbx3 has been identified as a regulator of liver development in the mouse, but its function in human liver development remains unknown. TBX3 mutant human pluripotent stem cell (PSC) lines were generated using CRISPR/Cas9 genome editing. TBX3 loss led to impaired liver differentiation and an upregulation of pancreatic gene expression, including PDX1, during a hepatocyte differentiation protocol. Other pancreatic genes, including NEUROG3 and NKX2.2, displayed more open chromatin in the TBX3 mutant hepatoblasts. Using a pancreatic differentiation protocol, cells lacking TBX3 generated more pancreatic progenitors and had an enhanced pancreatic gene expression signature at the expense of hepatic gene expression. These data highlight a potential role of TBX3 in regulating hepatic and pancreatic domains during foregut patterning, with implications for enhancing the generation of pancreatic progenitors from PSCs.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação , Pâncreas/metabolismo , Células-Tronco Pluripotentes/metabolismo , Proteínas com Domínio T/genética , Animais , Western Blotting , Diferenciação Celular/genética , Linhagem Celular , Perfilação da Expressão Gênica/métodos , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Camundongos , Pâncreas/citologia , RNA-Seq/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade da Espécie , Proteínas com Domínio T/metabolismo
14.
Curr Opin Hematol ; 28(5): 308-314, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34397590

RESUMO

PURPOSE OF REVIEW: Megakaryocytes are rare hematopoietic cells that play an instrumental role in hemostasis, and other important biological processes such as immunity and wound healing. With the advent of cell reprogramming technologies and advances in differentiation protocols, it is now possible to obtain megakaryocytes from any pluripotent stem cell (PSC) via hematopoietic induction. Here, we review recent advances in PSC-derived megakaryocyte (iMK) technology, focusing on platform validation, disease modeling and current limitations. RECENT FINDINGS: A comprehensive study confirmed that iMK can recapitulate many transcriptional and functional aspects of megakaryocyte and platelet biology, including variables associated with complex genetic traits such as sex and race. These findings were corroborated by several pathological models in which iMKs revealed molecular mechanisms behind inherited platelet disorders and assessed the efficacy of novel pharmacological interventions. However, current differentiation protocols generate primarily embryonic iMK, limiting the clinical and translational potential of this system. SUMMARY: iMK are strong candidates to model pathologic mutations involved in platelet defects and develop innovative therapeutic strategies. Future efforts on generating definitive hematopoietic progenitors would improve current platelet generation protocols and expand our capacity to model neonatal and adult megakaryocyte disorders.


Assuntos
Transtornos Plaquetários , Diferenciação Celular , Doenças Genéticas Inatas , Hematopoese , Modelos Genéticos , Células-Tronco Pluripotentes/metabolismo , Animais , Transtornos Plaquetários/genética , Transtornos Plaquetários/metabolismo , Transtornos Plaquetários/terapia , Plaquetas/metabolismo , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Doenças Genéticas Inatas/terapia , Humanos , Megacariócitos/metabolismo
15.
Front Endocrinol (Lausanne) ; 12: 682625, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149620

RESUMO

A mechanistic understanding of the genetic basis of complex diseases such as diabetes mellitus remain elusive due in large part to the activity of genetic disease modifiers that impact the penetrance and/or presentation of disease phenotypes. In the face of such complexity, rare forms of diabetes that result from single-gene mutations (monogenic diabetes) can be used to model the contribution of individual genetic factors to pancreatic ß-cell dysfunction and the breakdown of glucose homeostasis. Here we review the contribution of protein coding and non-protein coding genetic disease modifiers to the pathogenesis of diabetes subtypes, as well as how recent technological advances in the generation, differentiation, and genome editing of human pluripotent stem cells (hPSC) enable the development of cell-based disease models. Finally, we describe a disease modifier discovery platform that utilizes these technologies to identify novel genetic modifiers using induced pluripotent stem cells (iPSC) derived from patients with monogenic diabetes caused by heterozygous mutations.


Assuntos
Diabetes Mellitus/genética , Edição de Genes , Células Secretoras de Insulina , Células-Tronco Pluripotentes , Animais , Estudo de Associação Genômica Ampla , Humanos
16.
Stem Cell Reports ; 16(6): 1458-1467, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34019812

RESUMO

Inherited thrombocytopenia results in low platelet counts and increased bleeding. Subsets of these patients have monoallelic germline mutations in ETV6 or RUNX1 and a heightened risk of developing hematologic malignancies. Utilizing CRISPR-Cas9, we compared the in vitro phenotype of hematopoietic progenitor cells and megakaryocytes derived from induced pluripotent stem cell (iPSC) lines harboring mutations in either ETV6 or RUNX1. Both mutant lines display phenotypes consistent with a platelet-bleeding disorder. Surprisingly, these cellular phenotypes were largely distinct. The ETV6-mutant iPSCs yield more hematopoietic progenitor cells and megakaryocytes, but the megakaryocytes are immature and less responsive to agonist stimulation. On the contrary, RUNX1-mutant iPSCs yield fewer hematopoietic progenitor cells and megakaryocytes, but the megakaryocytes are more responsive to agonist stimulation. However, both mutant iPSC lines display defects in proplatelet formation. Our work highlights that, while patients harboring germline ETV6 or RUNX1 mutations have similar clinical phenotypes, the molecular mechanisms may be distinct.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/genética , Hematopoese , Células-Tronco Pluripotentes Induzidas/metabolismo , Megacariócitos/metabolismo , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Repressoras/genética , Trombocitopenia/genética , Trombocitopenia/metabolismo , Células Cultivadas , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Predisposição Genética para Doença , Humanos , Modelos Biológicos , Mutação , Fenótipo , Proteínas Proto-Oncogênicas c-ets/metabolismo , Proteínas Repressoras/metabolismo
18.
Blood ; 137(19): 2662-2675, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33569577

RESUMO

Patients with familial platelet disorder with a predisposition to myeloid malignancy (FPDMM) harbor germline monoallelic mutations in a key hematopoietic transcription factor, RUNX-1. Previous studies of FPDMM have focused on megakaryocyte (Mk) differentiation and platelet production and signaling. However, the effects of RUNX-1 haploinsufficiency on hematopoietic progenitor cells (HPCs) and subsequent megakaryopoiesis remains incomplete. We studied induced pluripotent stem cell (iPSC)-derived HPCs (iHPCs) and Mks (iMks) from both patient-derived lines and a wild-type (WT) line modified to be RUNX-1 haploinsufficient (RUNX-1+/-), each compared with their isogenic WT control. All RUNX-1+/- lines showed decreased iMk yield and depletion of an Mk-biased iHPC subpopulation. To investigate global and local gene expression changes underlying this iHPC shift, single-cell RNA sequencing was performed on sorted FPDMM and control iHPCs. We defined several cell subpopulations in the Mk-biased iHPCs. Analyses of gene sets upregulated in FPDMM iHPCs indicated enrichment for response to stress, regulation of signal transduction, and immune signaling-related gene sets. Immunoblot analyses in FPDMM iMks were consistent with these findings, but also identified augmented baseline c-Jun N-terminal kinase (JNK) phosphorylation, known to be activated by transforming growth factor-ß1 (TGF-ß1) and cellular stressors. These findings were confirmed in adult human CD34+-derived stem and progenitor cells (HSPCs) transduced with lentiviral RUNX1 short hairpin RNA to mimic RUNX-1+/-. In both iHPCs and CD34+-derived HSPCs, targeted inhibitors of JNK and TGF-ß1 pathways corrected the megakaryopoietic defect. We propose that such intervention may correct the thrombocytopenia in patients with FPDMM.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/deficiência , Células-Tronco Hematopoéticas/patologia , Megacariócitos/patologia , Síndromes Neoplásicas Hereditárias/patologia , Adulto , Sequência de Bases , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Citometria de Fluxo , Haploinsuficiência , Humanos , Imunofenotipagem , Células-Tronco Pluripotentes Induzidas/citologia , Sistema de Sinalização das MAP Quinases , Síndromes Neoplásicas Hereditárias/genética , Complexo Glicoproteico GPIb-IX de Plaquetas/análise , RNA Interferente Pequeno/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Análise de Célula Única , Trombopoese , Fator de Crescimento Transformador beta1/fisiologia
19.
Cell Rep ; 34(5): 108703, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33535042

RESUMO

Using chromatin conformation capture, we show that an enhancer cluster in the STARD10 type 2 diabetes (T2D) locus forms a defined 3-dimensional (3D) chromatin domain. A 4.1-kb region within this locus, carrying 5 T2D-associated variants, physically interacts with CTCF-binding regions and with an enhancer possessing strong transcriptional activity. Analysis of human islet 3D chromatin interaction maps identifies the FCHSD2 gene as an additional target of the enhancer cluster. CRISPR-Cas9-mediated deletion of the variant region, or of the associated enhancer, from human pancreas-derived EndoC-ßH1 cells impairs glucose-stimulated insulin secretion. Expression of both STARD10 and FCHSD2 is reduced in cells harboring CRISPR deletions, and lower expression of STARD10 and FCHSD2 is associated, the latter nominally, with the possession of risk variant alleles in human islets. Finally, CRISPR-Cas9-mediated loss of STARD10 or FCHSD2, but not ARAP1, impairs regulated insulin secretion. Thus, multiple genes at the STARD10 locus influence ß cell function.


Assuntos
Proteínas de Transporte/metabolismo , Cromatina/metabolismo , Células Secretoras de Insulina/metabolismo , Proteínas de Membrana/metabolismo , Fosfoproteínas/metabolismo , Humanos
20.
Blood Adv ; 5(3): 687-699, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33560381

RESUMO

RUNX1 familial platelet disorder (RUNX1-FPD) is an autosomal dominant disorder caused by a monoallelic mutation of RUNX1, initially resulting in approximately half-normal RUNX1 activity. Clinical features include thrombocytopenia, platelet functional defects, and a predisposition to leukemia. RUNX1 is rapidly degraded through the ubiquitin-proteasome pathway. Moreover, it may autoregulate its expression. A predicted kinetic property of autoregulatory circuits is that transient perturbations of steady-state levels result in continued maintenance of expression at adjusted levels, even after inhibitors of degradation or inducers of transcription are withdrawn, suggesting that transient inhibition of RUNX1 degradation may have prolonged effects. We hypothesized that pharmacological inhibition of RUNX1 protein degradation could normalize RUNX1 protein levels, restore the number of platelets and their function, and potentially delay or prevent malignant transformation. In this study, we evaluated cell lines, induced pluripotent stem cells derived from patients with RUNX1-FPD, RUNX1-FPD primary bone marrow cells, and acute myeloid leukemia blood cells from patients with RUNX1 mutations. The results showed that, in some circumstances, transient expression of exogenous RUNX1 or inhibition of steps leading to RUNX1 ubiquitylation and proteasomal degradation restored RUNX1 levels, thereby advancing megakaryocytic differentiation in vitro. Thus, drugs retarding RUNX1 proteolytic degradation may represent a therapeutic avenue for treating bleeding complications and preventing leukemia in RUNX1-FPD.


Assuntos
Transtornos Herdados da Coagulação Sanguínea , Transtornos Plaquetários , Leucemia Mieloide Aguda , Transtornos Plaquetários/genética , Plaquetas , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...